Mathematics as The Foundamental

Mathematics
• What are the formal rules to draw valid conclusions?
• What can be computed?
• How do we reason with uncertain information?

Philosophers staked out some of the fundamental ideas of AI, but the leap to a formal science required a level of mathematical formalization in three fundamental areas: logic, computation, and probability. The idea of formal logic can be traced back to the philosophers of ancient Greece, but itsmathematical development really began withthe workof George Boole (1815–1864), who worked out the details of propositional, or Boolean, logic (Boole, 1847). In 1879, Gottlob Frege (1848–1925) extended Boole’s logic to include objects and relations, creating the firstorder logic that is used today.4 Alfred Tarski (1902–1983) introduced a theory of reference that shows how to relate the objects in a logic to objects in the real world. The next step was to determine the limits of what could be done with logic and computation. The first nontrivial algorithm is thought to be Euclid’s algorithm for computing greatest common divisors. The word algorithm (and the idea of studying them) comes from al-Khowarazmi, a Persian mathematician of the 9th century, whose writings also introduced Arabic numerals and algebra to Europe. Boole and others discussed algorithms for logical deduction, and, by the late 19th century, efforts were under way to formalize general mathematical reasoning as logical deduction.

In 1930, Kurt G¨odel (1906–1978) showed that there exists an effective procedure to prove any true statement in the first-order logic of Frege and Russell, but that first-order logic could not capture the principle of mathematical induction needed to characterize the natural numbers. In 1931, G¨odel showed that limits on deduction do exist. His incompleteness theorem showed that in any formal theory as strong asPeano arithmetic (the elementary theory of natural numbers), there are true statements that are undecidable in the sense that they have no proof within the theory. This fundamental result can also be interpreted as showing that some functions on the integers cannot be represented by an algorithm—that is, they cannot be computed. This motivated Alan Turing (1912–1954) to try to characterize exactly which functions are computable—capable of being computed. This notion is actually slightly problematic becauseCOMPUTABLE the notion of a computation or effective procedure really cannot be given a formal definition. However, the Church–Turing thesis, which states that the Turing machine (Turing, 1936) is capable ofcomputing anycomputable function, isgenerally accepted asproviding asufficient definition. Turing also showed that there were some functions that no Turing machine can compute. For example, no machine can tell in general whether a given program will return an answer on a given input or run forever. Although decidability and computability are important toanunderstanding of computation, the notion of tractability has had an even greater impact. Roughly speaking, a problem iscalled intractable if thetime required to solve instances ofthe problem growsexponentially with the size of the instances. The distinction between polynomial and exponential growth in complexity was first emphasized in the mid-1960s (Cobham, 1964; Edmonds, 1965). It is important because exponential growth means that even moderately large instances cannot be solved in any reasonable time.

Therefore, one should strive to divide the overall problem of generating intelligent behavior into tractable subproblems rather than intractable ones. How can one recognize an intractable problem? The theory of NP-completeness, pio-NP- neered by Steven Cook (1971) and Richard Karp (1972), provides a method. Cook and Karp showed the existence of large classes of canonical combinatorial search and reasoning problems that are NP-complete. Any problem class to which the class of NP-complete problems can be reduced is likely to be intractable. (Although it has not been proved that NP-complete problems are necessarily intractable, most theoreticians believe it.) These results contrast with the optimism with which the popular press greeted the first computers—“Electronic Super-Brains” that were “Faster than Einstein!” Despite the increasing speed of computers, careful use of resources will characterize intelligent systems. Put crudely, the world is an extremely large problem instance! Work in AI has helped explain why some instances of NP-complete problems are hard, yet others are easy (Cheeseman et al., 1991). Besides logic and computation, the third great contribution of mathematics to AI is the theory of probability. The Italian Gerolamo Cardano (1501–1576) first framed the idea of probability, describing it in terms of the possible outcomes of gambling events.

In 1654, Blaise Pascal (1623–1662), in a letter to Pierre Fermat (1601–1665), showed how to predict the future of an unfinished gambling game and assign average payoffs to the gamblers. Probability quickly became an invaluable part of all the quantitative sciences, helping to deal with uncertain measurements and incomplete theories. James Bernoulli (1654–1705), Pierre Laplace (1749–1827), and others advanced the theory and introduced new statistical methods. Thomas Bayes (1702–1761), who appears on the front cover of this book, proposed a rule for updating probabilities in the light of new evidence. Bayes’ rule underlies most modern approaches to uncertain reasoning in AI systems.


EmoticonEmoticon