The Emergence of Intelligent Agents (1995–present)

The emergence of intelligent agents (1995–present)

Perhaps encouraged by the progress in solving the subproblems of AI, researchers have also started to look at the “whole agent” problem again. The work of Allen Newell, John Laird, and Paul Rosenbloom on SOAR (Newell, 1990; Laird et al., 1987) is the best-known example of a complete agent architecture. One of the most important environments for intelligent agents is the Internet. AI systems have become so common in Web-based applications that the “-bot” suffix has entered everyday language. Moreover, AI technologies underlie many Internet tools, such as search engines, recommender systems, and Web site aggregators.


One consequence of trying to build complete agents is the realization that the previously isolated subfields of AI might need to be reorganized somewhat when their results are to be tied together. In particular, it is now widely appreciated that sensory systems (vision, sonar, speech recognition, etc.) cannot deliver perfectly reliable information about the environment. Hence, reasoning and planning systems must be able to handle uncertainty. A second major consequence of the agent perspective is that AI has been drawn into much closer contact with other fields, such as control theory and economics, that also deal with agents. Recent progress in the control of robotic cars has derived from a mixture of approaches ranging from better sensors, control-theoretic integration of sensing, localization and mapping, as well as a degree of high-level planning. Despite these successes, some influential founders of AI, including John McCarthy (2007), Marvin Minsky (2007), Nils Nilsson (1995, 2005) and Patrick Winston (Beal and Winston, 2009), have expressed discontent with the progress of AI. They think that AI should put less emphasis on creating ever-improved versions of applications that are good at a specific task, such as driving a car, playing chess, or recognizing speech. Instead, they believe

AI should return to its roots of striving for, in Simon’s words, “machines that think, that learn HUMAN-LEVEL AI and that create.” They call the effort human-level AI or HLAI; their first symposium was in 2004 (Minsky et al., 2004). The effort will require very large knowledge bases; Hendler et al. (1995) discuss where these knowledge bases might come from.

A related idea is the subfield of Artificial General Intelligence or AGI (Goertzel and Pennachin, 2007), which held its first conference and organized the Journal of Artificial General Intelligence in 2008. AGI looks for a universal algorithm for learning and acting in any environment, and has its roots in the work of Ray Solomonoff (1964), one of the attendees of the original 1956 Dartmouth conference. Guaranteeing that what we create is really FRIENDLY AI Friendly AI is also a concern (Yudkowsky, 2008; Omohundro, 2008), one we will return to in Chapter 26.

1 komentar

I Like to add one more important thing here, The Artificial Intelligence (AI) Robots Market is expected to be around US$ 15.50 Billion by 2025 at a CAGR of 29% in the given forecast period.


EmoticonEmoticon